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Abstract
Purpose: The effectiveness of prospective motion correction (PMC) is often
evaluated by comparing artifacts in images acquired with and without PMC
(NoPMC). However, such an approach is not applicable in clinical setting due to
unavailability of NoPMC images. We aim to develop a simulation approach for
demonstrating the ability of fat-navigator-based PMC in improving perivascular
space (PVS) visibility in T2-weighted MRI.
Methods: MRI datasets from two earlier studies were used for motion artifact
simulation and evaluating PMC, including T2-weighted NoPMC and PMC
images. To simulate motion artifacts, k-space data at motion-perturbed positions
were calculated from artifact-free images using nonuniform Fourier transform
and misplaced onto the Cartesian grid before inverse Fourier transform. The
simulation’s ability to reproduce motion-induced blurring, ringing, and ghosting
artifacts was evaluated using sharpness at lateral ventricle/white matter bound-
ary, ringing artifact magnitude in the Fourier spectrum, and background noise,
respectively. PVS volume fraction in white matter was employed to reflect its
visibility.
Results: In simulation, sharpness, PVS volume fraction, and background noise
exhibited significant negative correlations with motion score. Significant corre-
lations were found in sharpness, ringing artifact magnitude, and PVS volume
fraction between simulated and real NoPMC images (p ≤ 0.006). In contrast,
such correlations were reduced and nonsignificant between simulated and real
PMC images (p ≥ 0.48), suggesting reduction of motion effects with PMC.
Conclusions: The proposed simulation approach is an effective tool to study
the effects of motion and PMC on PVS visibility. PMC may reduce the systematic
bias of PVS volume fraction caused by motion artifacts.
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1 INTRODUCTION

Perivascular spaces (PVS) are identified as an essential
pathway for clearing metabolic wastes in glymphatic

system,1 the abnormality of which has been found
to be associated with a variety of neurovascular and
neurodegenerative diseases.2 Recent advances in high field
MRI allow for the higher spatial resolution and the detec-
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tion of a higher number of PVSs in vivo. However, as
resolution improves, MR scans are prolonged and become
more sensitive to head movements. Motion can induce
blurring and ringing artifacts and additional noises in the
reconstructed image,3,4 rendering inaccuracy and unrelia-
bility of PVS measurement and reducing its diagnostic or
scientific relevance.5

To mitigate the motion-induced artifacts, two widely
used schemes including retrospective motion correction5–9

and prospective motion correction (PMC) have been
reported.10–18 An earlier study5 using fat navigators (Fat-
Nav) to estimate motion profile has found the beneficial
effects of retrospective motion correction on measuring
PVS visibility and physiological changes. However, the
effectiveness of FatNav-based PMC on improving PVS vis-
ibility remains unclear.

To evaluate the performance of PMC, uncorrected
reference images are required to quantify image quality
improvements. Several methods have been proposed to
obtain the uncorrected images,10–18 which often require
additional or prolonged scans. Motion artifact simulation
can avoid additional data acquisition and is therefore a
more feasible approach for evaluating PMC in clinical
setting.18

In this work, we propose a motion artifact simulation
approach that takes into account k-space acquisition pro-
cess and uses artifact free multi-channel combined mag-
nitude images and measured motion profiles. With the aid
of simulated images, we studied the effects of motion and
FatNav-based PMC on PVS visibility. First, we validated
the veracity of motion artifact simulation by comparing
four metrics that quantified the artifact level and PVS vis-
ibility between simulated images and real images without
PMC. Then, we investigated the effects of PMC on image
artifact level and PVS visibility by comparing real images
with PMC and simulated images without PMC.

2 METHODS

2.1 Data acquisition and processing

2.1.1 Participants

This study included two datasets from two earlier stud-
ies.5,19 The first dataset included 33 healthy volunteers
(aged 21–55 years, 23 females). All subjects underwent
a scan during air breathing and another scan during
carbogen breathing, resulting in 66 images in total.5
No motion correction was performed; however, naviga-
tors were acquired and will be named the without PMC
dataset (NoPMC dataset) in this study. The second dataset
with the PMC-enabled, named PMC dataset in this study,

included 19 patients with diabetes mellitus and 19 age-
and sex-matched healthy controls (aged 34–70 years, 21
females).19

2.1.2 MRI protocol

All images were acquired on a 7 T MRI scanner (Siemens
Healthineer, Erlangen, Germany) equipped with an
eight-channel (NoPMC dataset) or a single-channel (PMC
dataset) transmitter and a 32-channel receiver head coil
(Nova Medical, Wilmington, MA). No B1 shimming
for reducing radiofrequency field inhomogeneity was
performed when using the eight-channel transmitter.

For both datasets, a 3D variable flip angle turbo spin
echo (TSE) sequence was used to acquire T2-weighted
images for imaging PVSs using the following parameters:
TR/TE= 3000 (NoPMC) or 3,300 (PMC)/326 ms, field of
view (FOV)= 210 × 210 × 99.2 mm3, matrix size= 512
× 512 × 248, voxel size= 0.41 × 0.4 × 0.4 mm3, axial slices,
scan time= 8:03 (NoPMC) or 8:48 (PMC) min, and all
k-space data at a single partition encoding (PAR) step was
acquired during each TR. Partial Fourier sampling was
performed with a factor of 0.79 and 0.625 along the phase
encoding (PE) and PAR directions, respectively. Under-
sampling factor was 3 with 24 auto-calibration lines along
PE direction. Oversampling factor was 0.0323 along the
PAR direction.

A 3D FatNav20 was embedded within each TR to
monitor motion. With a binomial excitation pulse to
selectively excite fat signal centered at 3.4 ppm upfield
from water, the sequence parameters were set as fol-
lows: TR/TE= 3/1.31 ms, flip angle= 7◦, undersampling
factors= 4, partial Fourier factor= 0.75 along both PE and
PAR directions, FOV= 220 × 220 × 180 mm3 (NoPMC)
or 222 × 198 × 210 mm3 (PMC), matrix size= 100 × 100
× 82 (NoPMC) or 74 × 66 × 70 (PMC), voxel size= 2.2 ×
2.2 × 2.2 mm3 (NoPMC) or 3 × 3 × 3 mm3 (PMC), axial
slices and duration= 0.89 s (NoPMC) or 0.47 s (PMC).
A FatNav image with fully sampled rectangular region
around k-space center was acquired before the first TR for
obtaining calibration data for GRAPPA reconstruction.21

2.1.3 Prospective motion correction

Prospective motion correction works by dynamically
modifying scanner parameters in real time according to
motion data. During the scans, the FatNav images were
reconstructed and then registered to the first reference
image using the vendor software installed on the scanner
(MOCO functor) in order to yield relative motion param-
eters. These parameters were transmitted to the sequence
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ZHAO et al. 3

to adjust the imaging FOV position and orientation for the
next TR such that the relative position between the imaged
object and the FOV remained the same throughout the
scan.

2.1.4 Image reconstruction

The TSE images were reconstructed using
vendor-provided software on the scanner, and the Fat-
Nav images were reconstructed using the GRAPPA
algorithm.21

2.2 Motion artifact simulation

Motion reduces image quality by introducing inconsis-
tencies into k-space data. Due to motion, the MR sig-
nals corresponding to k-space data are placed into wrong
positions in the k-space before inverse Fourier transform
into the image space. Therefore, the key of motion arti-
fact simulation is to generate the k-space data at the
real positions of readout lines in non-Cartesian grid, and
then rearrange them into the intended Cartesian k-space
coordinates.

The simulation included the following steps: (1) Due
to oversampling along the PAR direction, we expanded
the initial magnitude image by zero filling four voxels
on each edge such that its Fourier transform matched
the sampled k-space positions. (2) The three rotational
motion parameters in each TR were converted into a 3 × 3
matrix A for transforming the intended Cartesian k-space
coordinates k to the real measured non-Cartesian coordi-
nates k′ by k′ = Ak. (3) The magnitude images expanded
by (1) were then Fourier transformed into the k-space
at the real k-space coordinates k′ through 3D nonuni-
form fast Fourier transform.22 (4) The k-space data were
“incorrectly” placed onto the predefined Cartesian coordi-
nates k. The phase at each k-space position was adjusted
according to S′(k) = S

(
k′
)
× eik×Δr to account for the linear

phase shift due to translational motion Δr. The transla-
tional motion Δr is related to the translational motion
parameters Δr0 derived from the FatNav registration by
Δr = Δr0 +

(
I − A−1) × Δp, where I is the unit matrix and

Δp is the difference between the TSE and FatNav imag-
ing FOV centers. (5) Because the magnitude images we
used possess only real components with zeros phases, the
k-space data not acquired due to partial Fourier accel-
eration at coordinate k was filled by the complex conju-
gate of data at −k. (6) The motion-corrupted images were
obtained by applying inverse Fourier transform and then
removing the four voxels at each edge of the FOV along
PAR direction.

Our motion artifact simulation was performed using
motion profiles of all scans in the NoPMC dataset and two
baseline images (as shown in Figures S1 and S2) from sub-
jects (named Sub 1 and Sub 2) in the NoPMC dataset with
small motion scores (0.87 and 0.80 mm) and no apparent
artifacts. The images of subject with the lowest motion
score (0.36 mm) were not selected due to the presence of
streak artifacts in white matter (denoted by red arrows in
Figure S3). For the PMC dataset, our simulation was per-
formed using motion profile and the corresponding image
from the same subject as the baseline image. Because there
were some residual artifacts on the corrected images, the
artifacts on the simulated images may be higher than the
images acquired when the PMC is turned off under the
same motion condition. Therefore, we also conducted the
simulation based on the clean images of Sub 1 and 2.
The simulation was implemented in MatLab 2021a (Math-
Works, Natick, MA), and each image took approximately
11 min on a computer equipped with 3.3 GHz Intel Xeon
W-2275 CPU.

2.3 Data analysis

2.3.1 Motion parameters

The six rigid-body motion parameters were obtained at
each TR either using the 3dvolreg tool in AFNI ver-
sion 22.3.0323 (NoPMC dataset) or the MOCO functor
(PMC dataset), including rotation and translation around
or along left–right (L-R), anterior–posterior (A-P), and
superior–inferior (S-I) spatial directions. The registration
results of MOCO functor were found to be similar to those
obtained using 3dvolreg in AFNI for the same images
(difference ≤ 0.037 mm and 0.044 degree in five represen-
tative subjects). The motion parameters for the NoPMC
dataset were the same as those used in our previous study.5
The motion profiles were estimated by registering the Fat-
Nav images onto the first TR image and subtracted by
motion parameters corresponding to time point at which
the k-space center was acquired.

To quantify motion severity for each subject, motion
score was calculated by summing the root sum square of
the translational (MT , unit: mm) and rotational motion
ranges (MR, unit: degree) along each direction.5 The value
of MR is roughly equal to the maximum shift (in mm) expe-
rienced by a point on the surface of a sphere rotated by
MR degrees with a radius of 57.3 mm, which represents
the approximate size of human brain.24 The motion sever-
ity was classified into four groups based on the motion
score: no motion (motion score ≤ 0.9 mm), mild (0.9 mm
< motion score ≤ 2 mm), moderate (2 mm < motion score
≤ 4 mm), and severe (motion score >4 mm).
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4 ZHAO et al.

F I G U R E 1 Examples of blurring and ringing artifacts on cropped sagittal and coronal slices in real images with mild and severe motion
in the NoPMC dataset. (A) and (B) are the lateral ventricle/white matter boundary sharpnesses calculated by the FWHMs of intensity profile
estimated from red cuboid ROI. (C) and (D) are RAMs in the normalized Fourier spectrum. (I) and (F) are corresponding motion profiles,
with motion scores of 1.25 and 4.19 mm, respectively. NoPMC, without prospective motion correction; RAM, ringing artifact magnitude.

2.3.2 Blurring artifact measurement:
Lateral ventricle/white matter boundary
sharpness

Because the goal of the study is to study the effects of
motion artifacts on PVS/white matter (WM) visibility,
which is dependent on PVS to WM contrast, it is desir-
able to study how PVS to WM contrast varies with the
severity of motion artifacts. However, because the contrast
between PVS and WM depends strongly on the partial vol-
ume effects, which vary greatly between PVS in different
regions and from different subjects,25 we instead chose to
evaluate the effects of motion on image contrast using the
sharpness26 at the lateral ventricle/WM boundary, which
should have similar partial volume effects across subjects.
Sharpness was quantified using the full width at half max-
imum (FWHM) of a Gaussian function for which the inte-
gral was an s-shaped edge function. The edge function was
used to fit the signal variation across tissue boundary. An
increase in FWHM was indicative of increased blurriness
and decreased image sharpness due to motion.

The region of interest (ROI) for edge function fit-
ting was a cuboid across the lateral ventricular boundary

drawn manually using ITK-SNAP version 3.827 on the
central sagittal slice with an average size of 7 (S–I) × 3
(L-R) × 6 (A–P) mm3, as shown by the red rectangles in
Figure 1A,B. No interpolation was performed for obtain-
ing the scatter plots in Figure 1. The signal intensities
versus the distances of all voxels to the boundary plane
were then fitted by the edge function using the lsqcurve-
fit function in MatLab 2020b (MathWorks) to obtain
the FWHM.

2.3.3 Ringing artifact measurement:
Magnitude of high-frequency component
in Fourier spectrum

Ringing artifact generates oscillation around tissue bound-
aries, which manifests as high-frequency components in
the frequency domain. Whereas Gibbs ringing artifacts
may also appear on high-resolution TSE images as a con-
sequence of finite k-space sampling, such confounding
effects produce similar offsets across subjects. Therefore,
the magnitude of ringing artifact (RAM) at the oscillation
frequency can be used to quantify its level. We used the
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ZHAO et al. 5

F I G U R E 2 Dependencies of motion artifact metrics of simulated images on motion score. Correlations between blurring (A, D),
ringing (B, E), and ghosting (C, F) artifact metrics and motion score. The artifact metrics were calculated from the images simulated using
motion profiles of the NoPMC and PMC datasets based on the motion-clean images of Sub 1 and 2, respectively. Linear regression coefficients
and Spearman correlation coefficients are shown, where asterisks next to the coefficients denote significance (p< 0.05). PMC, prospective
motion correction.

correlation in RAM between the real and simulated images
to assess the validity of ringing artifact simulations.

We first determined the ROI in WM on a coronal slice
with an average size of 16 (S–I) × 16 (L–R) mm2, where
the stripes parallel to the brain surface were prominent,
as shown by the red rectangles in Figure 1C,D. The signal
intensities along the direction parallel to the stripes were
averaged to suppress noise such that the signal oscillation
perpendicular to the stripes can be represented by its
line intensity profile. The resulting intensity profile was
then Fourier transformed to obtain its spectrum in the
frequency domain. The magnitudes in spectrum were sub-
sequently normalized to a range of 0–1. To determine the
frequency of the ringing artifact, we counted the number
of stripes within the ROI and then obtained the magnitude
at the corresponding peak position, whose distance to the
spectrum center was equal to the number of stripes.

2.3.4 Ghosting artifact measurement:
Background noise level

Ghosting artifact can be considered as a structured noise,
which usually appears as a spatial shift of imaged object

along the PE direction.28,29 The presence of ghosting
artifact can be examined not only from the overlap-
ping brain structure but also from the background noise
level. We determined the background noise level by the
standard deviation (SD) of signal intensities across all
voxels within 20-mm-wide squares at the four corners
of all axial slices. The SDs were normalized by the
mean WM signal to account for receiver gain changes
across subjects.

2.3.5 PVS and WM visibility measurement

To quantitatively measure the PVS and WM visibility, a
3D multi-channel multi-scale encoder-decoder network
(M2EDN)30 was applied to delineate tubular PVSs, and a
classic encoder–decoder network (U-Net)31 was applied to
segment WM. The WM and PVS volumes were calculated
by multiplying the voxel size and the number of segmented
voxels. The PVS volume fraction was calculated by the
ratio of PVS volume to WM volume.

The maximum intensity projection (MIP) along the
viewing A–P and S–I directions of 6 mm-thick sections was
calculated to clearly visualize vessel-like thin PVSs.
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6 ZHAO et al.

F I G U R E 3 Performance of the proposed motion artifact simulation in terms of artifact metrics. Comparison of blurring (A–C), ringing
(D–F), and ghosting (G–I) artifact metrics between real and simulated images in the NoPMC dataset. Real images refer to the uncorrected
images in the NoPMC dataset from which the motion profiles were obtained. Simulated images were obtained based on these motion profiles
and the artifact-free images of Sub 1 and 2, respectively. The red dashed lines denote the identity lines (y= x). Linear regression coefficients
and Spearman correlation coefficients are shown in the first two columns, where asterisks next to the coefficients denote significance
(p< 0.05). Wilcoxon signed rank tests were performed in the last column (***p< 0.001). N.S., nonsignificance.

2.3.6 Statistical analysis

Motion scores, FWHMs, RAMs, and background noise
level were not normally distributed for the NoPMC dataset
in both real and simulated cases (p ≤ 0.007, Shapiro–Wilk
tests). Motion scores, simulated FWHMs, simulated back-
ground noise level, and real and simulated RAMs were not
normally distributed for the PMC dataset (p ≤ 1.6 × 10−4,
Shapiro–Wilk tests). WM volume and PVS volume frac-
tions were not normally distributed for the NoPMC and
PMC datasets in both real and simulated cases (p ≤ 0.006,
Shapiro–Wilk tests). Due to non-normality, Spearman

correlation test was performed to study the correlation
of image metrics between real and simulated images,
and between image metrics and motion score. Wilcoxon
test was performed to investigate the difference between
real and simulated image metrics. However, for study-
ing the correlations between real WM volume and PVS
volume fraction and motion score, Spearman partial cor-
relation test was performed instead of Spearman correla-
tion test, taking age (NoPMC) or age and disease (PMC)
as confounding factors, both of which have been pre-
viously identified as factors that influence PVS visibil-
ity.25,32 Spearman partial correlation tests was not used
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ZHAO et al. 7

F I G U R E 4 Examples of PVS visibility at different motion severities on cropped coronal and axial MIP slices of real NoPMC images.
(A–C) are real NoPMC images, with motion scores of 1.24, 2.38, and 5.10 mm and PVS volume fractions of 1.32%, 0.59%, and 0.56%,
respectively. (D–F) are corresponding motion profiles. MIP, maximum intensity projection; PVS, perivascular spaces.

for studying the correlations between simulated WM vol-
ume/PVS volume fraction and motion score or between
real and simulated WM volume/PVS volume fractions
because our goal was to test whether motion affects image
metrics in the simulated images, which was not affected
by age and disease other than through their effects on
motion.

The significance threshold was set to 0.05 for p val-
ues after corrected by Bonferroni correction to account
for multiple comparisons. The statistical analysis was
performed using RStudio version 4.2.1 (RStudio, Inc.,
Boston, MA).

3 RESULTS

3.1 Performance of motion artifact
simulation

In the NoPMC dataset, the motion score ranged from 0.36
to 5.14 mm, with an average of 1.41 mm (±1.03 mm). Of
the 66 NoPMC images, twenty-nine (43.9%), 22 (33.3%), 11
(16.7%), and 4 (6.1%) belonged to the no, mild, moderate,
and severe motion groups, respectively.

Two cases with mild and severe motion in the
NoPMC dataset are shown in Figure 1, with motion
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8 ZHAO et al.

F I G U R E 5 Examples of PVS visibility at different motion severities on cropped coronal and axial MIP slices of real PMC images. (A–C)
are real PMC images, with motion scores of 1.35, 2.05, and 4.95 mm, and PVS volume fractions of 1.40%, 1.02%, and 1.20%, respectively. (D–F)
are corresponding motion profiles.

scores of 1.25 and 4.19 mm, respectively. As the motion
severity increased, FWHMs (0.52 and 1.09 mm) also
increased as calculated from the image intensity profiles in
Figure 1A,B, indicating decreased sharpness at lateral ven-
tricular boundary. Figure 1C,D show the RAMs (0.007 and
0.02) in the normalized Fourier spectrum, suggesting more
severe ringing artifacts at large motion. The corresponding
motion profiles for the two cases are shown in Figure 1E,F.

Figure 2 shows the correlations between simulated
motion artifact metrics and motion score. There were sig-
nificant positive correlations between FWHMs and motion
score (𝜌 ≥ 0.71, corrected p ≤ 4.4 × 10−16), as shown in
Figure 2A,D. However, no significant correlation between
simulated RAMs and motion score were found, as shown

in Figure 2B,E (corrected p ≥ 0.34). There were signifi-
cant negative correlations between background noise and
motion score, as shown in Figure 2C,F (𝜌 ≤ −0.34, cor-
rected p ≤ 8.2 × 10−4).

The correlations between simulated artifact metrics
and motion score only demonstrated the image quality
degradation due to motion. To further prove the verac-
ity of simulated artifacts, Figure 3 compares the blur-
ring, ringing, and ghosting artifact metrics between sim-
ulated and real NoPMC images. Figure 3A,B reveal that
the FWHMs calculated on the real and simulated images
were roughly proportional to each other, with the pro-
portionality constants from a linear fit with zero inter-
cept close to identity (0.97 and 1.02, respectively, for
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ZHAO et al. 9

F I G U R E 6 Examples of PVS visibility at different motion severities on cropped coronal and axial MIP slices of simulated images. (B–D)
were generated by simulation based on the artifact-free image from Sub 1, as shown in (A) and the motion profiles from the NoPMC images
in Figure 4D–F, with motion scores of 1.24, 2.38, and 5.10 mm, respectively. (F–H) were generated by simulation based on the
artifact-free image from Sub 2, as shown in (E) and the motion profiles from the PMC images in Figure 5D–F, with motion scores of 1.35,
2.05, and 4.95 mm, respectively.

Sub 1 and 2). The Spearman’s correlation coefficients
were 0.86 and 0.94 (corrected p≤ 4.4× 10−16), respectively.
Figure 3D,E show the weaker but still significant corre-
lations in RAMs between the real and simulated images,
with the correlation coefficients of 0.48 and 0.42 (corrected
p ≤ 0.001), respectively. The FWHMs and RAMs were
not significantly different between the real and simulated
images (Figure 3C,F). However, there was no significant
correlation between the simulated and real background
noise levels, as shown in Figure 3G,H (corrected p ≥ 0.50).
The background noise was significantly greater in the sim-
ulated images than in the real images (Wilcoxon signed
rank test; p ≤ 1.4× 10−5), as shown in Figure 3I. The mean
values, p values for Wilcoxon signed rank tests, and Spear-
man correlation coefficients are summarized in rows 1–3
of columns 1–5 in Table S1.

3.2 Effects of motion artifacts on WM
and PVS visibility

To demonstrate the effects of real motion artifacts on PVS
visibility at different motion severities with and without

PMC, Figures 4 and 5 show representative real TSE
MIP images at different motion severities in the NoPMC
and PMC datasets, respectively. For the NoPMC images
in Figure 4A–C, the motion scores of the three scans
were 1.24, 2.38, and 5.10 mm, respectively, for which the
corresponding motion profiles are shown in Figure 4D–F.
The PVS/WM boundary became blurrier as the motion
score increased. For the PMC images in Figure 5A–C,
the motion scores of the three scans were 1.35, 2.05, and
4.95 mm, respectively, for which the corresponding motion
profiles are shown in Figure 5D–F. With prospective
motion correction, the PVS/WM boundary still remained
clearly defined despite the presence of some ringing arti-
facts.

To demonstrate the effects of simulated motion arti-
facts on PVS visibility at different motion severities,
Figure 6B–D,F–H display the MIP of the simulated images
generated using the motion profiles in Figures 4 and 5, and
the baseline images of Sub 1 and 2 (shown in Figure 6A,E,
respectively). There was a clear decrease of PVS visibility as
the motion score increased in both datasets, as denoted by
red arrows, because the PMC effects were not considered
in the simulation. The original PVS volume fraction of Sub
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10 ZHAO et al.

F I G U R E 7 Effects of simulated motion artifacts on WM volume (A, B) and PVS volume fraction (C, D). The WM and PVS metrics were
obtained from the images simulated using motion profiles of the NoPMC and PMC datasets based on the artifact-free images of Sub 1 and 2,
respectively. The black dashed lines denote the values calculated from the baseline images. Linear regression coefficients and
Spearman correlation coefficients are shown, where asterisks next to the coefficients denote significance (p< 0.05). WM, white matter.

1 (Sub 2) was 0.55% (1.05%). After simulation, the volume
fractions became 0.46% (0.97%), 0.40% (0.88%), and 0.26%
(0.82%), respectively, as the motion severity increased.

Figure 7 shows the dependencies of WM volume and
PVS volume fraction on the motion score calculated from
the simulated images for Sub 1 and 2. For the WM vol-
ume, significant negative correlation was found for Sub
2 (𝜌 = −0.53, corrected p= 2.2 × 10−8) but not for Sub 1.
For the PVS volume fraction, strong negative correlations
were observed for both subjects (𝜌 ≤ −0.86, corrected p
≤ 4.4 × 10−16). Additionally, there was no significant cor-
relation between real WM volume and motion score (data
not shown; 𝜌=−0.03, corrected p>1) or between real PVS
volume fraction and motion score (data not shown; 𝜌 =
−0.27, corrected p= 0.08) in the NoPMC dataset.

No significant correlation between real and simulated
WM volumes was observed in the NoPMC dataset, as
shown in Figure 8A,B. However, in contrast to a lack of
correlation between real PVS volume fraction and motion

score, there were significant correlations between real
and simulated PVS volume fraction (𝜌 ≥ 0.36, corrected p
≤ 0.006) in the NoPMC dataset, as shown in Figure 8D,E.
The Wilcoxon test was not performed in Figure 8C,F
because the real images were from different subjects,
whereas the simulated images were from two representa-
tive subjects. The mean values of the WM volume and PVS
volume fraction and Spearman correlation coefficients
between real and simulated images are summarized in
rows 4–5 of columns 1–5 in Table S1.

3.3 Performance of prospective motion
correction

In the PMC dataset, the motion score ranged from 0.70
to 6.75 mm, with an average of 2.12 mm (±1.37 mm).
Of the 38 PMC images, three (7.9%), 21 (55.3%), 10
(26.3%), and four (10.5%) belonged to the no, mild, mod-
erate, and severe motion groups, respectively. The motion
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ZHAO et al. 11

F I G U R E 8 Comparison of WM volume (A–C) and PVS volume fraction (D–F) between real and simulated images in the NoPMC
dataset. Real images refer to the uncorrected images in the NoPMC dataset from which the motion profiles were obtained. Simulated images
were obtained based on these motion profiles and the artifact-free images of Sub 1 and 2, respectively. The red dashed lines denote the
identity lines (y= x). Linear regression coefficients and Spearman correlation coefficients are shown in the first two columns, where asterisks
next to the coefficients denote significance (p< 0.05). Wilcoxon signed rank tests were not performed in the last column. N/A, not available.

scores of PMC dataset were significantly higher than those
of NoPMC dataset, as shown in Figure S4A (Wilcoxon
rank sum test; p ≤ 0.02). However, the motion scores
were not significantly different between the patients and
healthy controls in the PMC dataset (Wilcoxon rank
sum test; p= 0.22). Besides, the PVS volume fractions of
patients in the PMC dataset were significantly higher than
those of healthy volunteers in both NoPMC and PMC
datasets, as shown in Figure S4B (Wilcoxon rank sum
test; p ≤ 0.01).

Figure 9 compares the FWHM, RAM, background
noise, WM volume, and PVS volume fraction between real
and simulated images in the PMC dataset, when the simu-
lation was conducted based on the corrected images. There
were significant correlations in all the metrics between
real and simulated images (p ≤ 0.03). The real FWHMs
and RAMs were lower (slope ≤ 0.90), whereas the real
PVS volume fractions were higher than the simulated ones
(slope= 1.16). Furthermore, the boxplots on Figure 9B,J
also show the significantly reduced FWHMs and the sig-
nificantly increased PVS volume fractions on the corrected
images as compared to the simulated images (Wilcoxon
signed rank test; p ≤ 1.5 × 10−7). However, Figure 9F

shows the significantly increased background noise on the
corrected images as compared to the simulated images.
No significant difference between the simulated and real
images was observed for RAM and WM volume, as shown
in Figure 9D,H. The mean values of the metrics, p values
for Wilcoxon signed rank tests, and Spearman correlation
coefficients are summarized in Table S2.

Figure 10 compares the FWHM, RAM, and PVS vol-
ume fraction between real and simulated images in the
PMC dataset, when the simulation was conducted based
on the images of Sub 1 and 2. In contrast to the NoPMC
dataset, there was no significant correlation for any of the
three metrics (corrected p ≥ 0.48) or background noise
(data not shown; corrected p≥ 0.10) between real and sim-
ulated images, suggesting the reduction of motion effects
with prospective motion correction. Furthermore, signifi-
cantly lower FWHMs (Figure 10C) were found on the real
images than on the simulated images (Wilcoxon signed
rank test; p ≤ 1.7 × 10−7), suggesting the improving sharp-
ness after prospective motion correction. The mean values
of the metrics, p values for Wilcoxon signed rank tests,
and Spearman correlation coefficients are summarized in
columns 6–10 of Table S1.
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12 ZHAO et al.

(A) (B) (C) (D)

(E) (F)

(I) (J)

(G) (H)

F I G U R E 9 Comparison of blurring artifact (A, B), ringing artifact (C, D), ghosting artifact (E, F), WM volume (G, H), and PVS volume
fraction (I, J) between real and simulated images in the PMC dataset. Real images refer to the prospectively motion corrected images in the
PMC dataset from which the motion profiles were obtained. Simulated images were obtained based on these motion profile and the
corresponding PMC image from the same subject. The red dashed lines denote the identity lines (y= x). Linear regression coefficients and
Spearman correlation coefficients are shown in the first and third columns, where asterisks next to the coefficients denote significance
(p< 0.05). Wilcoxon signed rank tests were performed in the second and last columns (***p< 0.001). N.S., nonsignificance.

4 DISCUSSION

In this study, we proposed motion artifact simulation to
measure the effects of PMC on PVSs. This method allows
for generation of uncorrected images to evaluate the PMC
performance without the need of MR scan repetition. We
found that FWHM, RAM, and PVS volume fraction were
significantly correlated between simulated and real images
in the NoPMC dataset, suggesting the effectiveness of the
simulation approach in reproducing blurring and ringing
artifacts and PVS visibility reduction. Such correlations
were absent in the PMC dataset, suggesting the ability of
PMC to alleviate motion artifacts on real images. Further-
more, we found that PMC can improve image sharpness in
the presence of motion.

Several methods have been proposed to obtain the
uncorrected images in order to assess the performance
of PMC, including acquired multiple scans with PMC
enabled and disabled,10–17 and motion artifact simula-
tion.18 However, to evaluate the effectiveness of PMC in

routine clinical studies, motion artifact simulation is more
feasible. Multiple scans and interleaved acquisition will
prolong the scan time that affects the comfort level of
subjects and increases the likelihood of head movements.
Furthermore, in methods using multiple scans, the motion
observed in each scan cannot be identical, although usu-
ally the subjects are instructed to perform deliberate move-
ments.13–16 In addition, the effectiveness of PMC on cor-
recting intentional motion-induced artifacts may not be
generalizable to routine studies in which more complex
unintentional motion can occur.

Multiple methods have been proposed for perform-
ing motion artifact simulation,33 including those based on
magnitude images6–9 and those based on multi-channel
complex k-space data.18,34 Magnitude image-based meth-
ods require less computational time and are applicable
to more studies because the raw k-space data are not
always available. Motion effects were accounted for by
either modifying k-space coordinates while keeping the
data intact8,18,34 or by modifying the k-space data at the
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ZHAO et al. 13

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

F I G U R E 10 Comparison of blurring artifact metrics (A–C), ringing artifact metrics (D–F), and PVS volume fraction (G–I) between real
and simulated images in the PMC dataset. Real images refer to the prospectively motion corrected images in the PMC dataset from which the
motion profiles were obtained. Simulated images were obtained based on these motion profiles and the artifac-free images of Sub 1 and 2,
respectively. The red dashed lines denote the identity lines (y= x). Linear regression coefficients and Spearman correlation coefficients are
shown, where asterisks next to the coefficients denote significance (p< 0.05). Wilcoxon signed rank tests were performed in (C) and (F)
(***p< 0.001).

same coordinates.6–9 We adopted the latter approach since
it matches more closer to the actual data sampling and
image reconstruction process in the presence of motion.
To the best of our knowledge, our method of calculat-
ing motion-corrupted data directly using nonuniform fast
Fourier transform has not been proposed in the earlier
studies.6–9 Furthermore, the method of using realistic
motion profiles to simulate artifacts and comparing them
to the artifacts in the corresponding real images has not
been carried out, except for a study by Zahneisen et al.18

The RAM in simulated images shows a nonsignif-
icant correlation with motion score (Figure 2B,E)

but significantly correlated with RAM in real images
(Figure 3D,E). Furthermore, the PVS volume fraction
in real NoPMC images shows a nonsignificant negative
correlation with motion score but a significant posi-
tive correlation with the simulated PVS volume fraction
(Figure 8D,E). These suggest that our motion simulation
can more accurately reflect the effects of motion on the
PVS visibility than the motion score, as the artifact level
depends not only on motion range but also motion pattern.

The significant correlations in FWHM, RAM, and PVS
volume fraction between simulated and real images across
subjects in NoPMC dataset (Table S1) further demonstrate
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14 ZHAO et al.

the veracity of the simulated motion-induced artifacts.
Such correlations were reduced and became nonsignifi-
cant if the real NoPMC images were replaced by the PMC
images. Furthermore, we found a significant reduction
in FWHMs on real PMC images compared to simulated
images. These suggest the effectiveness of PMC in mitigat-
ing the negative effects of motion on image sharpness and
PVS visibility. However, the differences between real and
simulated RAMs were nonsignificant in the PMC dataset,
which implied that PMC was less effective in reducing
ringing artifacts compared to blurring artifacts.

In contrast to the PVS volume fraction, the correla-
tions of WM volume between real and simulated images
were weaker (Figure 8A,B), which suggest the lower
sensitivity of WM visibility to motion than the smaller
thin-tubular structures such as PVS. In addition, we found
the nonsignificant correlations between simulated and
real background noise level (Figure 3G,H), suggesting the
dominance of other noise sources such as thermal and
physiological noises that our simulation was not capable
of reproducing.

Several studies have identified PVS as a potential
biomarker of neurovascular and neurodegenerative dis-
eases.2,35–38 PVS play a crucial role in the removal of
metabolic substances and waste products from brain. Its
abnormalities can lead to the accumulation of toxins and
wastes, which may contribute to the pathogenesis of these
diseases. The improvements in PVS visibility and robust-
ness against motion on MRI by PMC can facilitate the
investigation of PVS abnormalities, especially in longitu-
dinal studies, which may provide novel insights into the
underlying neuropathogenesis and promote the develop-
ment of therapeutic targets.

There are several limitations of our study. First, no real
images with and without motion from the same subjects
were used for validating the simulation method. Second,
although the computation demand can be considerably
reduced, the difference in simulation performance con-
ducted on the k-space of magnitude image or the raw
k-space data remain to be studied. Furthermore, the sim-
ulation neglected the potential impacts of magnetic field
inhomogeneity and RF transmitting and receiving coil sen-
sitivities, which might change due to head position and
orientation during the scan. The resulting MR signal vari-
ations could lead to deviations of simulated artifacts.

5 CONCLUSIONS

Our proposed motion artifact simulation provides an
effective tool for investigating the effects of motion and
PMC on PVS visibility. In the presence of motion, the
FatNav-based PMC was shown to mitigate the negative

impacts of motion and increase the volume of MRI-visible
PVSs in WM. Our study demonstrated the value of PMC
for improving the quality of PVS images in investigations
aimed at further illuminating the potential role of PVS
abnormalities in the pathogenesis of neurodegenerative
disorder.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

FIGURE S1. Magnitude images of Sub 1 from NoPMC
dataset and corresponding motion profile with the motion
score of 0.87 mm.
FIGURE S2. Magnitude images of Sub 2 from NoPMC
dataset and corresponding motion profile with the motion
score of 0.80 mm.
FIGURE S3. Magnitude images of a subject from NoPMC
dataset and corresponding motion profile that had the low-
est motion score of 0.36 mm. This subject image was not
selected as the baseline for simulation due to the observed
streak artifacts denoted by red arrows.
FIGURE S4. Comparison of motion scores (A) and PVS
volume fractions (B) between healthy volunteers and dia-
betes. NoPMC dataset contain 66 images of 33 healthy
volunteers. PMC dataset contain 19 images of healthy
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volunteers and 19 images of diabetes. The p values for
Wilcoxon’s rank sum tests are shown.
TABLE S1. Mean values of the image metrics of real and
simulated images in the NoPMC and PMC datasets, p
values of Wilcoxon’s signed rank tests and Spearman’s cor-
relation tests between them. Simulation was conducted
based on the motion-clean images of Sub 1 and 2. The p
values were all corrected using Bonferroni correction.
TABLE S2. Mean values of the image metrics of real
and simulated images in the PMC dataset, p values of
Wilcoxon’s signed rank tests and Spearman’s correlation

tests between them. Simulation was conducted based on
the motion profile and corresponding image from the same
subject.
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Effects of prospective motion correction on
perivascular spaces at 7T MRI evaluated using
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